Using CT data, software generates images from a beam’s eye perspective, which are equivalent to conventional simulator images. External landmarks are used to define an internal isocentre for treatment set-up. The CT simulator provides maximal tumour information as well as full 3D capabilities (unlike the simulator CT facility). It is particularly useful for designing palliative treatments such as for lung and vertebral metastases, as well as for some breast treatments using tangential beams, which can be virtually simulated and then 3D planned. The ability to derive CT scans, and provide target volume definition, margin generation, and simulation all on one workstation, provides a rapid solution.
A CT mode attached to the simulator gantry can be used to produce images with a relatively limited resolution during the simulation process. This provides both external contouring and some normal anatomical data, such as lung and chest wall thickness, for simple inhomogeneity corrections. Images do not give detailed tumour information or accurate CT numbers. These scans are time consuming to obtain, and are therefore usually limited to the central, superior and inferior levels of the target volume.
These are critical normal tissues whose radiation sensitivity may significantly influence treatment planning and/or prescribed dose. Any movements of the organs at risk (OAR) or uncertainties of set-up may be accounted for with a margin similar to the principles for PTV, to create a planning organ at risk volume (PRV). The size of the margin may vary in different directions. Where a PTV and PRV are close or overlap, a clinical decision about relative risks of tumour relapse or normal tissue damage must be made. Shielding of parts of normal organs is possible with the use of multi-leaf collimation (MLC). Dose–volume histograms (DVHs) are used to calculate normal tissue dose distributions.
Comments
Post a Comment